Thermal Analysis of Micro-Column Arrays for Tailored Temperature Control in Space

Author:

Adjim M.1,Pillai R.2,Bensaoula A.2,Starikov D.3,Boney C.3,Saidane A.4

Affiliation:

1. Département d’Hydraulique, Faculté des Sciences de l’Ingénieur, Université Abou-Bekr Belkaid de Tlemcen, Zemcen 13000, Algeria

2. Physics and Electrical and Computer Engineering Departments, Texas Center for Advanced Materials, University of Houston, 724 S&R Building 1, Houston, TX 77004

3. Integrated Micro Sensors, Inc., 10814 Atwell Drive, Houston, TX 77096

4. Département de Génie Electrique, ENSET d’Oran, B.P. 1523, M’Naouer-Oran 1523, Algeria

Abstract

Lightweight yet precise, temperature control protocols are critical in a variety of applications. This is especially true in space where weight and volume are at a premium and reliability is paramount. In space, complex processes to manage the heat fluxes generated from within and absorbed from space by the spacecraft are usually implemented. Surfaces having different heat fluxes might need to be controlled separately and maintained at different temperatures. The work presented in this paper evaluates a novel laser surface modification process to form micro-column arrays (MCA) on any material for use as highly adaptive radiators. The MCA-structured surfaces have experimentally been shown to have excellent emissive properties. Finite element methods have been used to simulate the temperature profiles for surfaces with and without MCA compared to pin fin structures as a function of input heat flux density. In the case of Ti, our models show that pin fin arrays are better heat radiating surfaces than equivalent MCA structures with cone-like profiles. Such structures, however, are difficult to modify and usually require complicated and expensive fabrication processes. Overall, MCA structures are shown to allow good control over base surface temperature for varying heat fluxes and different MCA aspect ratios. For Ti, under steady state conditions, an aspect ratio of 12 has been shown to be optimal for surface heat reduction. Preliminary experimental results show that the temperature drop is inline with that theoretically predicted.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference17 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3