A Preliminary Study of the MSFR Dynamics

Author:

Guerrieri Claudia1,Aufiero Manuele1,Cammi Antonio1,Fiorina Carlo1,Luzzi Lelio1

Affiliation:

1. Politecnico di Milano, Milano, Italy

Abstract

In the last years, increasing interest has been focused on an innovative concept of Molten Salt Reactor (MSR) characterized by a fast neutron spectrum that combines the favorable characteristics of MSRs adopting molten salt fluorides both as fuel and coolant with those ones of fast neutron reactors. As a matter of fact, the Molten Salt Fast Reactor (MSFR) has been recognized as a long term alternative to solid-fuelled fast neutron systems and has been identified as reference Gen-IV configuration. Although considerable studies have been carried out for the analysis of the graphite-moderated MSR dynamics, the adoption of a fast spectrum configuration without graphite in the core is expected to notably modify the dynamic behavior of the system, thus requiring further investigation. In this paper, a preliminary analysis of the MSFR dynamics is performed allowing for the evaluation of the impact of some safety parameters (e.g., feedback coefficients and delayed neutron fraction) on the system behavior for different fuel cycle strategies. For this purpose, a simplified non-linear one-dimensional model of the primary circuit has been developed and the dynamic response of the system has been investigated with reference to different significant transient initiators, namely: unprotected transient overpower, unprotected loss of flow, and unprotected loss of heat sink. These analyses are thought to give a basic understanding of the MSFR dynamics, as well as significant indications in terms of the system safety parameters.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3