Damage-Mitigating Control of Mechanical Systems: Part I—Conceptual Development and Model Formulation

Author:

Ray Asok1,Wu Min-Kuang1,Carpino Marc1,Lorenzo Carl F.2

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802

2. NASA Lewis Research Center, 21000 Brookpark Road, Cleveland, OH 44135

Abstract

A major goal in the control of complex mechanical systems such as advanced aircraft, spacecraft, and power plants is to achieve high performance with increased reliability, availability, component durability, and maintainability. The current state-of-the-art of control systems synthesis focuses on improving performance and diagnostic capabilities under constraints that often do not adequately represent the dynamic properties of the materials. The reason is that the traditional design is based upon the assumption of conventional materials with invariant characteristics. In view of high performance requirements and availability of improved materials, the lack of appropriate knowledge about the properties of these materials will lead to either less than achievable performance due to overly conservative design, or over-straining of the structure leading to unexpected failures and drastic reduction of the service life. The key idea of the research reported in this paper is that a significant improvement in service life can be achieved by a small reduction in the system dynamic performance. This requires augmentation of the current system-theoretic techniques for synthesis of decision and control laws with governing equations and inequality constraints that would model the properties of the materials for the purpose of damage representation and failure prognosis. The major challenge in this research is to characterize the damage generation process in a continuous-time setting, and then utilize this information for synthesizing algorithms of robust control, diagnostics, and risk assessment in complex mechanical systems. Damage mitigation for control of mechanical systems is reported in the two-part paper. The concept of damage mitigation is introduced and a continuous-time model of fatigue damage dynamics is formulated in this paper which is the first part. The second part which is a companion paper presents the synthesis of the open-loop control policy and the results of simulation experiments for transient operations of a reusable rocket engine.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Load-Sharing With Degradation Management in a Compressor Station;IEEE Transactions on Automation Science and Engineering;2024-01

2. A survey of models of degradation for control applications;Annual Reviews in Control;2020

3. On-Board Real-Time Optimization Control for Turbo-Fan Engine Life Extending;International Journal of Turbo & Jet-Engines;2016-01-13

4. A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management;Renewable and Sustainable Energy Reviews;2016-01

5. Towards farm-level health management of offshore wind farms for maintenance improvements;The International Journal of Advanced Manufacturing Technology;2015-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3