Identification of Static Loading Conditions Using Piezoelectric Sensor Arrays

Author:

Zhang He1,Shen Mingzhou1,Zhang Yangyang1,Chen Yisheng1,Lü Chaofeng2

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China; Soft Matter Research Center, Zhejiang University, Hangzhou 310027, China e-mail:

Abstract

To make sure the safety, durability, and serviceability of structures in-service, health monitoring systems (HMS) are widely used in management of civil infrastructures in recent years. Compared with traditional force sensors, lead zirconium titanate (PZT) sensor performs better in smart sensing in HMS with advantages of high sensitivity, self-powering and fast response to highly dynamic load. Here, we propose to utilize PZT sensor arrays to identify the position and magnitude of external loads that are applied on a simply supported beam. An identification method is proposed based on experimental tests and theoretical electromechanical analyses, which is proved effective by comparing the identified parameters with the actually applied loading conditions and signals recorded by commercial force sensors. Experimental observations also reveal that PZT sensors respond faster to loading process than commercial force sensor, which makes it qualified in identification of transient loading such as impact processing in loading history. Results also demonstrate the applicability of the method to identify multiple concentrated load and the average moving speed of the applied load. The current method may provide a useful tool for identifying load conditions on various beam structures.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3