Affiliation:
1. Department of Mechanical Engineering, Celal Bayar Univeristy, Manisa 45140, Turkey e-mail:
2. Professor Department of Mechanical Engineering, Technology Faculty, Firat University, Elaziğ 23119, Turkey e-mail:
Abstract
Numerical study of nanofluid jet impingement cooling of a partially elastic isothermal hot surface was conducted with finite element method. The impingement surface was made partially elastic, and the effects of Reynolds number (between 25 and 200), solid particle volume fraction (between 0.01 and 0.04), elastic modulus of isothermal hot surface (between 104 and 106), size of the flexible part (between 7.5 w and 25 w), and nanoparticle type (spherical, cylindrical, blade) on the fluid flow and heat transfer characteristics were analyzed. It was observed that average Nusselt number enhances for higher Reynolds number, higher values of elastic modulus of flexible wall, smaller size of elastic part, and higher nanoparticle solid volume fraction and for cylindrical shaped particles. It is possible to change the maximum Nusselt number by 50.58% and 33% by changing the elastic modulus of the hot wall and size of elastic part whereas average Nusselt number changes by only 9.33% and 6.21%. The discrepancy between various particle shapes is higher for higher particle volume fraction.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献