The Quartic Piecewise-Linear Criterion for the Multiaxial Yield Behavior of Human Trabecular Bone

Author:

Sanyal Arnav1,Scheffelin Joanna2,Keaveny Tony M.23

Affiliation:

1. Department of Mechanical Engineering, Orthopaedic Biomechanics Laboratory, University of California, Berkeley, CA 94720 e-mail:

2. Department of Mechanical Engineering, Orthopaedic Biomechanics Laboratory, University of California, Berkeley, CA 94720

3. Department of Bioengineering, University of California, Berkeley, CA 94720

Abstract

Prior multiaxial strength studies on trabecular bone have either not addressed large variations in bone volume fraction and microarchitecture, or have not addressed the full range of multiaxial stress states. Addressing these limitations, we utilized micro-computed tomography (μCT) based nonlinear finite element analysis to investigate the complete 3D multiaxial failure behavior of ten specimens (5 mm cube) of human trabecular bone, taken from three anatomic sites and spanning a wide range of bone volume fraction (0.09–0.36), mechanical anisotropy (range of E3/E1 = 3.0–12.0), and microarchitecture. We found that most of the observed variation in multiaxial strength behavior could be accounted for by normalizing the multiaxial strength by specimen-specific values of uniaxial strength (tension, compression in the longitudinal and transverse directions). Scatter between specimens was reduced further when the normalized multiaxial strength was described in strain space. The resulting multiaxial failure envelope in this normalized-strain space had a rectangular boxlike shape for normal–normal loading and either a rhomboidal boxlike shape or a triangular shape for normal-shear loading, depending on the loading direction. The finite element data were well described by a single quartic yield criterion in the 6D normalized-strain space combined with a piecewise linear yield criterion in two planes for normal-shear loading (mean error ± SD: 4.6 ± 0.8% for the finite element data versus the criterion). This multiaxial yield criterion in normalized-strain space can be used to describe the complete 3D multiaxial failure behavior of human trabecular bone across a wide range of bone volume fraction, mechanical anisotropy, and microarchitecture.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference51 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3