Affiliation:
1. Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
Abstract
Steady two-dimensional thin-film flow of a Newtonian fluid is examined in this theoretical study. The influence of exit conditions and gravity is examined in detail. The considered flow is of moderately high inertia. The flow is dictated by the thin-film equations of boundary layer type, which are solved by expanding the flow field in orthonormal modes in the transverse direction and using Galerkin projection method, combined with integration along the flow direction. Three types of exit conditions are investigated, namely, parabolic, semiparabolic, and uniform flow. It is found that the type of exit conditions has a significant effect on the development of the free surface and flow field near the exit. While for the parabolic velocity profile at the exit, the free surface exhibits a local depression, for semiparabolic and uniform velocity profiles, the height of the film increases monotonically with streamwise position. In order to examine the influence of gravity, the flow is studied down a vertical wall as well as over a horizontal wall. The role of gravity is different for the two types of wall orientation. It is found that for the horizontal wall, a hydraulic-jump-like structure is formed and the flow further downstream exhibits a shock. The influence of exit conditions on shock formation is examined in detail.