Friction and Wear of Metal Particle, Barium Ferrite and Metal Evaporated Tapes in Rotary Head Recorders

Author:

Patton Steven T.1,Bhushan Bharat1

Affiliation:

1. Computer Microtribology and Contamination Laboratory, Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210-1107

Abstract

Abstract The friction and wear mechanisms of particulate (metal particle and barium ferrite) and metal evaporated (ME) magnetic tapes were investigated. We conducted tests on these tapes in contact with metal-in-gap (MIG) video heads, using a rotary head recorder in the still (pause) mode. We measured signal degradation and friction during the tests. We conducted chemical and surface analyses of the interface components after the tests. We found discernible differences between the tribological behavior of particulate tapes, and that of the ME tape. The particulate tapes exhibited a more stable friction and head output than the ME tape. We attributed this to a cleaner contact region, due to effective action of the head cleaning agents (HCAs) found in the particulate tapes. The particulate tapes exhibited wear lifetime longer by an order of magnitude, than that of the ME tape. Mild continuous adhesive wear occurred on particulate tapes followed by catastrophic failure. Tape fatigue possibly led to the catastrophic failure. On the ME tape surface, damage initiated at high points or bumps, which resulted in localized delaminations of the tape coating. This led to a catastrophic removal of the entire magnetic coating over the rubbing track. The major difference between the particulate and ME tapes was that signal dropouts concurrent with increases in friction, which resulted from debris accumulation on the video head, preceded the catastrophic failure in the case of ME tapes. We investigated the running-in process of the video head. We found that the durability of a tape and the initial head output increased, and the initial friction force on a tape decreased, as the head ran-in with the tape. We attributed this result to the tape forming a favorable contour on the head rubbing surface. Deposits on the head surface consisted of binder for the particulate tapes, and lubricant and the magnetic coating for ME tape. Tape materials transferred preferentially to the recessed metal core and the recessed glass of the MIG head.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pole tip recession and staining at the head to tape interface of linear tape recording systems;Wear;2002-02

2. Effect of Magnetic-Head Slot Orientation on Pole Tip Recession and Debris Generation in Linear Tape Drives;Tribology Transactions;2001-01

3. Durability and failure mechanisms of digital tapes in a rotary tape drive;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2001-01-01

4. Analysis of stain formation and wear mechanisms in a linear tape drive;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2000-06-01

5. Generation of magnetic tape debris and head stain in a linear tape drive;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;1999-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3