An Experimental Study on Heat Transfer Enhancement of Non-Newtonian Fluid in a Rectangular Channel With Dimples/Protrusions

Author:

Zhang Di1,Zheng Lu1,Xie Gongnan2,Xie Yonghui3

Affiliation:

1. Key Laboratory of Thermal Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

2. Engineering Simulation and Aerospace Computing (ESAC), School of Mechanical Engineering, Northwestern Polytechnical University, P.O. Box 552, Xi'an, Shaanxi Province 710072, China e-mail:

3. Professor School of Energy and Power Engineering, Xi'an Jiaotong University, Xi’an, Shaanxi Province 710049, China e-mail:

Abstract

Dimple and protrusion play important roles in the heat transfer enhancement and flow characteristic in cooling channels, which widely employed within electronic cooling systems. Non-Newtonian fluid has significant differences with Newtonian fluid, such as water, in fluid characteristic. In this study, an experiment on the viscosity of three different kinds of non-Newtonian fluids, i.e., xanthan gum solution, Carbopol 934 solution, polyacrylamide solution, was first accomplished to acquire the viscosity with different mass fractions. Then, experimental measurements on heat transfer and friction characteristics of non-Newtonian fluid in a rectangular channel with dimples and protrusions were conducted. The overall Nusselt numbers (Nu) and Fanning friction factors at different dimple/protrusion structures were obtained with various inlet flow rates and mass fractions. The results show that only xanthan gum solution has the significant shear thinning effect within the concentration range of this study, and the dimples/protrusions both have great effect on the heat transfer enhancement in the rectangular channel, and that the heat transfer of the case with the protrusions and crossing arrangement can be further enhanced with the higher Nu when compared to the case with the dimples and aligned arrangement. Moreover, an increase in Nu with the higher non-Newtonian fluid mass fraction is observed.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference28 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3