An Analytical Solution of Fracture-Induced Stress and Its Application in Shale Gas Exploitation

Author:

Li Jia1,Guo Boyun1,Feng Yin2

Affiliation:

1. College of Engineering, University of Louisiana at Lafayette, P.O. Box 44690, Lafayette, LA 70504

2. Louisiana State University, Baton Rouge, LA 70803

Abstract

Natural gas and oil exploration and production from shale formations have gained a great momentum in many regions in the past five years. Producing hydrocarbons from shale is challenging because of low productivity of wells. Optimal design of transverse fractures is a key to achieving successful well completion and field economics. This paper presents a simple analytical method to determine the minimum fracture spacing required for preventing fracture-merging. Result of the analytical method has been verified by a Finite Element Method for a typical fracturing condition in a shale gas formation. Field performances of shale gas wells are found consistent with what suggested by this work. The analytical method presented in this paper can replace the sophisticated solutions and time-consuming numerical simulators in calculating stresses around hydraulic fractures and identifying the minimum required fracture spacing. The method can be applied to designing of multifrac completions in shale plays to optimize placement of transverse fractures for maximizing well productivity and hydrocarbon recovery. This work provides engineers a simple tool for optimizing their well completion design in shale gas reservoirs.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3