Development, Application, and Validation of a Quick Optimization Method for the Class of Axial Fans

Author:

Bamberger Konrad1,Carolus Thomas1

Affiliation:

1. Institute for Fluid Dynamics and Thermodynamics, Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Str. 9-11, Siegen 57076, Germany e-mail:

Abstract

This article discusses the development, application, and validation of an optimization method for the impellers of axial fans. The method is supposed to be quick, accurate, and applicable to optimization at an extensive range of design points (DPs). Optimality here means highest possible total-to-static efficiency for a given design point and is obtained by an evolutionary algorithm in which the target function is evaluated by computational fluid dynamics (CFD)-trained artificial neural networks (ANN) of the multilayer perceptron (MLP) type. The MLPs were trained with steady-state CFD (i.e., Reynolds-averaged Navier–Stokes (RANS)) results of approximately 14,000 distinct impellers. After this considerable one-time effort to generate the CFD dataset, each new fan optimization can be performed within a few minutes. It is shown in this article that the MLPs are reliably applicable to all typical design points of axial fans according to Cordier's diagram. Moreover, an extension of the design space toward the classic realm of mixed-flow or even centrifugal fans is observed. It is also shown that the optimization method successfully handles geometrical and operational constraints proving the high degree of universality of the method. Another focus of this article is on the application of the newly developed optimization method to numerous design points. This yields two major findings: the estimation of maximum achievable total-to-static efficiency as a function of the targeted design point (with and without geometrical constraints) as well as a quantification of the improvement over fans designed with classic methods. Both investigations are supported by flow field analyses to aerodynamically explain the findings. Experimental validation of the method was performed with a total of nine prototypes. The positive correlation between MLP, CFD, and experiment successfully validates the methodology.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3