LBE-Water Interaction in LIFUS 5 Facility to Study a SGTR Event Under ELSY Reactor Conditions

Author:

Bernardi Davide1,Ciampichetti Andrea1,Tarantino Mariano1,Coccoluto Giovanni1,Forgione Nicola2,Poli Francesco2,Catanorchi Marco2

Affiliation:

1. ENEA C.R. Brasimone, Camugnano, Italy

2. University of Pisa, Pisa, Italy

Abstract

In the framework of the research activities of the EURATOM FP6 project named ELSY (European Lead-cooled System), aimed at demonstrating the possibility of designing a competitive and safe fast critical reactor based on the Generation IV Lead Fast Reactor (LFR) concept, the study of the lead-water interaction following an incidental SGTR (Steam Generator Tube Rupture) event is an important issue to address. To simulate such event, an experimental test has been carried out on the LIFUS 5 facility at the ENEA Brasimone Research Centre, in order to assess the physical effects and the possible consequences connected to this kind of interaction. The experiment has been conducted by injecting water at the pressure of 185 bar and with a temperature of 300 °C into a volume of 80 l of Lead Bismuth Eutectic (LBE) kept at atmospheric pressure and at a temperature of 400 °C. The experimental facility has been suitably modified in order to reproduce as close as possible the operating conditions of the ELSY Steam Generator Unit (SGU), in which a free volume of cover gas (argon) is foreseen at the top of the system, with the objective to dampen the pressure waves inside the SGU itself. The experimental test has been supported through a numerical modelling campaign performed at the University of Pisa by means of the SIMMER code within both 2-D (SIMMER III) and 3-D (SIMMER IV) models. Pre-test simulations have been carried out to aid the design of the new facility configuration and to select the test conditions which could better reproduce the behaviour expected for ELSY. In addition, a post-test analysis has also been accomplished, allowing to compare the numerical and experimental results, so as to validate and assess the performance of the code when employed for this kind of applications.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3