Experimental Study of Bubble Behavior in a Two-Dimensional Particle Bed With High Solid Holdup

Author:

Cheng Songbai1,Hirahara Daisuke1,Tanaka Youhei1,Gondai Yoji1,Matsumoto Tatsuya1,Morita Koji1,Fukuda Kenji1,Yamanao Hidemasa2,Suzuki Tohru2,Tobita Yoshiharu2

Affiliation:

1. Kyushu University, Fukuoka, Japan

2. Japan Atomic Energy Agency, O-arai, Ibaraki, Japan

Abstract

In a core disruptive accident of a fast breeder reactor, the post accident heat removal is crucial to achieve in-vessel core retention. Therefore, a series of experiments on bubble behavior in a particle bed was performed to clarify three-phase flow dynamics in debris bed, which is essential in heat-removal capability, under coolant boiling conditions. Although in the past several experiments have been carried out in the gas-liquid-solid system to investigate the bubble dynamics, most of them were under lower solid holdup (≤ 0.5), where the solid-phase influence may be not so important as much as the liquid phase. While for this study, the solid holdup is much higher (> 0.55) where the particle-bubble interaction may be dominated. The current experiment was conducted in a 2D tank with the dimensions of 300 mm height, 200 mm width and 10 mm gap thickness. Water was used as liquid phase, while bubbles were generated by injecting nitrogen gas from the bottom of the tank. Various experimental parameters were taken, including different particle bed height (from 30 mm to 200 mm), various particle diameter (from 0.4 mm to 6 mm), different particle type (acrylic, glass, alumina and zirconia beads), and different nitrogen gas flow rate (around 1.75 ml/min and 2.7 ml/min). By using digital image analysis method, three kinds of bubble rise behavior were observed under current experimental conditions and confirmed by the quantitative detailed analysis of bubble rise properties including bubble departure frequency and bubble departure size. This experiment is expected in the future to provide appropriate quantitative data for the analysis and verification of SIMMER-III, an advanced fast reactor safety analysis code.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3