Modeling Gas–Liquid Flow Between Rotating and Nonrotating Annular Disks

Author:

Pardeshi Irsha1,Shih Tom I-P.2

Affiliation:

1. School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907 e-mail:

2. J. William Uhrig and Anastasia Vournas Head and Professor School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907 e-mail:

Abstract

When a liquid is forced to flow radially outward in the gap between two coaxial, parallel annular disks—one rotating and one stationary—the liquid occupies the entire gap until the speed of the rotating disk reaches a critical value. Beyond that critical speed, gas from the outer radius starts to enter into the gap, a process referred to as aeration. The higher the rotational speed, the greater is the extent of penetration by the gas into the gap. The extent of gas penetration strongly affects the torque exerted between the two disks because of the large difference in the gas and liquid viscosities. In this study, a reduced-order model is developed to predict the onset of aeration, extent of gas penetration into the gap, and drag torque as a function of the disk's rotational speed, gap between disks, properties of the liquid, and mass flow rate of the liquid forced through the gap. The model developed was validated by comparing predictions with experimental data.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on drag torque characteristics of wet multiplate clutch under high-speed operating condition;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-12-29

2. Laminar Torsional Couette Flow Over a Wavy Disk;Journal of Fluids Engineering;2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3