Motion Patterns at Rotor Stator Contact

Author:

Ehehalt Ulrich1,Hahn Eric2,Markert Richard1

Affiliation:

1. Darmstadt University of Technology, Darmstadt, Germany

2. University of New South Wales, Sydney, Australia

Abstract

The present paper discusses the various movement patterns during rotor stator contact. Both rotor and stator are assumed to be flexible damped single degree of freedom systems. The contact is described by a flexible viscoelastic model. Dry friction between rotor and stator is taken into account. Despite strong non-linearity due to contact, rotor unbalance causes purely synchronous motions. However, in some circumstances, the synchronous motion may become unstable and the rotor motion turns into a non-synchronous state, which can be very destructive. Non-synchronous motions include backward whirl, sub- and super-harmonic vibration and chaotic motion. The influence of various system parameters on the different types of motion is investigated by numerical simulation. The transients between synchronous to non-synchronous motions are exemplarily demonstrated by run-up and run-down processes. It is shown that different motion types may co-exist. Even in speed regions where the synchronous whirl is stable, non-synchronous motions with rotor stator contact are possible.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3