Geometric Characterization of the Configuration Space of Rigid Body Mechanisms in Regular and Singular Points

Author:

Mu¨ller Andreas1

Affiliation:

1. Chemnitz University of Technology, Chemnitz, Germany

Abstract

The kinematics of rigid body mechanisms is considered from a differential-geometric perspective. Geometric properties of a mechanism are intrinsically determined by the topology of its configuration space — the solution set of closure functions. The mechanism kinematics is usually characterized by the tangent space and tangent cone to the configuration space, i.e. by locally considering its topology. There are, however, mechanisms for which this is not sufficient. Generally, beside the topology, a complete picture of the kinematics needs both, the configuration space and the ideal generated by the closure functions. Tangent spaces/cones are differential-geometric objects associated to a variety. Two additional objects are introduced in this paper: the kinematic tangent space and the kinematic tangent cone. Three locally equivalent models for the mechanism kinematics are introduced. Due to their different mathematical nature the different models admit to apply specific mathematical tools. The analysis of model I is based on Lie group and screw algebraic methods, while model II and III are analyzed using methods from algebraic geometry. A computationally efficient algorithm for the construction of the kinematic tangent cone is presented. Its application is shown for several examples. A novel mechanism is presented of which the differential and local degree of freedom are different in regular points, so-called ‘paradox-in-the-small’.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3