Gaussian Process Meta-Models for Efficient Probabilistic Design in Complex Engineering Design Spaces

Author:

Wang Liping1,Beeson Don2,Akkaram Srikanth1,Wiggs Gene2

Affiliation:

1. GE Global Research Center, Niskayuna, NY

2. GE Transportation, Cincinnati, OH

Abstract

Probabilistic design in complex design spaces is often a computationally expensive and difficult task because of the highly nonlinear and noisy nature of those spaces. Approximate probabilistic methods, such as, First-Order Second-Moments (FOSM) and Point Estimate Method (PEM) have been developed to alleviate the high computational cost issue. However, both methods have difficulty with non-monotonic spaces and FOSM may have convergence problems if noise on the space makes it difficult to calculate accurate numerical partial derivatives. Use of design and Analysis of Computer Experiments (DACE) methods to build polynomial meta-models is a common approach which both smoothes the design space and significantly improves the computational efficiency. However, this type of model is inherently limited by the properties of the polynomial function and its transformations. Therefore, polynomial meta-models may not accurately represent the portion of the design space that is of interest to the engineer. The objective of this paper is to utilize Gaussian Process (GP) techniques to build an alternative meta-model that retains the properties of smoothness and fast execution but has a much higher level of accuracy. If available, this high quality GP model can then be used for fast probabilistic analysis based on a function that much more closely represents the original design space. Achieving the GP goal of a highly accurate meta-model requires a level of mathematics that is much more complex than the mathematics required for regular linear and quadratic response surfaces. Many difficult mathematical issues encountered in the implementation of the Gaussian Process meta-model are addressed in this paper. Several selected examples demonstrate the accuracy of the GP models and efficiency improvements related to probabilistic design.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3