Affiliation:
1. Rensselaer Polytechnic Institute, Troy, NY
Abstract
Flexible systems maintain a high performance level under changing operating conditions or design requirements. Flexible systems acquire this powerful feature by allowing critical aspects of their design con guration to change during the operating life of the product or system. In the design of such systems, designers are often required to make critical decisions regarding the exible and the non-exible aspects of the design con guration. We propose an optimization based methodology to design exible systems that allows a designer to effectively make such critical decisions. The proposed methodology judiciously generates candidate optimal design versions of the exible system. These design versions are evaluated using multiobjective techniques in terms of the level of exibility and the associated penalty. A highly exible system maintains optimal performance under changing operating conditions, but could result in increased cost and complexity of operation. The proposed methodology provides a systematic approach for incorporating designer preferences and selecting the most desirable design version — a feature absent in several recently proposed exible system design frameworks. The developments of this paper are demonstrated with the help of a exible three-bar-truss design example.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Decision Making in Product Family Optimization Under Uncertainty;48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference;2007-04-23
2. Optimal Design of Product Families Using Selection-Integrated Optimization (SIO) Methodology;11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference;2006-09-06
3. A New Selection-Integrated Optimization (SIO) Methodology for Adaptive Systems Optimization;47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference<BR> 14th AIAA/ASME/AHS Adaptive Structures Conference<BR> 7th;2006-05