Multi-Objective Design Optimization for Product Platform and Product Family Design Using Genetic Algorithms

Author:

Akundi Satish V. K.1,Simpson Timothy W.1,Reed Patrick M.1

Affiliation:

1. Pennsylvania State University, University Park, PA

Abstract

Many companies are using product families and platform-based product development to reduce costs and time-to-market while increasing product variety and customization. Multi-objective optimization is increasingly becoming a powerful tool to support product platform and product family design. In this paper, a genetic algorithm-based optimization method for product family design is suggested, and its application is demonstrated using a family of universal electric motors. Using an appropriate representation for the design variables and by adopting a suitable formulation for the genetic algorithm, a one-stage approach for product family design can be realized that requires no a priori platform decision-making, eliminating the need for higher-level problem-specific domain knowledge. Optimizing product platforms using multi-objective algorithms gives the designer a Pareto solution set, which can be used to make better decisions based on the trade-offs present across different objectives. Two Non-Dominated Sorting Genetic Algorithms, namely, NSGA-II and ε-NSGA-II, are described, and their performance is compared. Implementation challenges associated with the use of these algorithms are also discussed. Comparison of the results with existing benchmark designs suggests that the proposed multi-objective genetic algorithms perform better than conventional single-objective optimization techniques, while providing designers with more information to support decision making during product family design.

Publisher

ASMEDC

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Growth Engine Concept And Its Potential For An Electrified Aviation Future;Journal of Engineering for Gas Turbines and Power;2023-08-14

2. Nghiên cứu thiết kế và tối ưu hóa hiệu suất động cơ servo ứng dụng trong băng chuyền;Journal of Military Science and Technology;2022-10-28

3. Evaluation of design options for green product development: a combined Cuckoo search and life cycle assessment approach;The International Journal of Life Cycle Assessment;2022-05

4. Value-driven design for product families: a new approach for estimating value and a novel industry case study;Structural and Multidisciplinary Optimization;2021-02-25

5. Platform Strategy for New Product Development;Handbook of Research on Strategic Fit and Design in Business Ecosystems;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3