Affiliation:
1. University of Michigan, Ann Arbor, MI
Abstract
Design of modern engineering products requires complexity management. Several methodologies for complex system optimization have been developed in response. Single-level strategies centralize decision-making authority, while multi-level strategies distribute the decision-making process. This article studies the impact of coupling strength on single-level Multidisciplinary Design Optimization formulations, particularly the Multidisciplinary Feasible (MDF) and Individual Disciplinary Feasible (IDF) formulations. The Fixed Point Iteration solution strategy is used to motivate the analysis. A new example problem with variable coupling strength is introduced, involving the design of a turbine blade and a fully analytic mathematical model. The example facilitates a clear illustration of MDF and IDF and provides an insightful comparison between these two formulations. Specifically, it is shown that MDF is sensitive to variations in coupling strength, while IDF is not.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献