Random Loads Fatigue: The Use of Spectral Methods Within Multibody Simulation

Author:

Braccesi Claudio1,Cianetti Filippo1,Landi Luca1

Affiliation:

1. Universita` degli Studi di Perugia, Perugia, Italy

Abstract

The evaluation of the fatigue damage performed by using the Power Spectral Density function (PSD) of stress and strain state is proving to be extremely accurate for a family of random processes characterized by the property of being stationary. The present work’s original contribution is the definition of a methodology which extracts stress and strain PSD matrices from components modelled using a modal approach (starting from a finite element modelling and analysis) within mechanical systems modelled using multibody dynamic simulation and subject to a generic random load (i.e. multiple-input, with partially correlated inputs). This capability extends the actual stress evaluation scenario (principally characterised by the use of finite element analysis approach) to the multibody dynamic simulation environment, more powerful and useful to simulate complex mechanical systems (i.e. railway, automotive, aircraft and aerospace systems). As regards the fatigue damage evaluation, a synthesis approach to evaluate an equivalent stress state expressed in terms of the PSD function of Preumont’s “equivalent von Mises stress (EVMS)”, starting from the complete stress state representation expressed in terms of PSD stress matrix and easily usable in the consolidated spectral methods, is proposed. This approach allows and has allowed the use of the above methods such as the Dirlik formula as a damage evaluation method. An additional result is the conception and implementation of a frequency domain method for the component’s most probable state of stress, allowing quickly identification of the most stressed and damageble locations. The described methodologies were developed and embedded into commercial simulation codes and verified by using as a test case a simple reference multibody model with a simple flexible component.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3