The Mechanics Difference Between the Outer Torus and Inner Torus

Author:

Sun Bo-Hua1,Song Guang-Kai1

Affiliation:

1. Institute of Mechanics and Technology, Xian University of Architecture and Technology School of Civil Engineering, , Xian 710055 , China

Abstract

AbstractThe formulation used by the most of studies on elastic torus are either Reissner’s mixed formulation or Novozhilov’s complex-form one; however, for vibration and some displacement boundary-related problem of torus, those formulations face a great challenge. It is highly demanded to have a displacement-type formulation for torus. In this article, we will carry on the first author’s previous work (Sun, 2010, “Closed-Form Solution of Axisymmetric Slender Elastic Toroidal Shells,” J. Eng. Mech., 136, pp. 1281–1288.), and with the help of our own maple codes, we are able to simulate some typical problems of torus. The numerical results are verified by both finite element analysis and H. Reissner’s formulation. Our investigations show that both deformation and stress response of an elastic torus are sensitive to the radius ratio. The analysis of a torus must be done by using the bending theory of a shell instead of membrane theory of shells, and also reveal that the inner torus is stronger than outer torus due to their Gaussian curvature. One of the most interesting discovery is that the crowns of a torus, the turning point of the Gaussian curvature at ϕ = 0, π, are the line where the mechanics response of inner and outer torus is almost separated.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference37 articles.

1. Der Spannungszustand in Kreisringschale und ähnlichen Schalen Mit Scheitelkreisringen Unter Drehsymmetrischer Belastung;Zhang,1944

2. Complex Form Equation and Asymptotic Solution;Qian;J. Tsinghua University,1979

3. The General Solution for Thin-Walled Curved Tubes With Arbitrary Loadings and Various Boundary Conditions;Xia;Int. J. Pressure Vessels Piping,1986

4. Toroidal Shells—History, Current Situation and Future;Zhang,1990

5. Turning Point Solutions for Thin Shell Vibration;Zhang;Int. J. Solids. Struct.,1991

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3