Affiliation:
1. Institute of Atomic Energy, Kyoto University, Kyoto, Japan
Abstract
Incipient boiling superheat for exponentially increasing heat inputs to a platinum wire supported horizontally in a pool of water was measured for exponential periods ranging from 5 ms to 10 s and for subcoolings ranging from 25 to 75K under atomospheric pressure. The heat transfer coefficient before the initiation of boiling was related to those by conduction and by natural convection. The heat flux at the incipient boiling point increased with the decrease in the period. The log-log plot of the heat flux against the superheat at the incipient boiling point had a single asymptotic line of slope 2 which was independent of subcoolings in the high heat flux region. On the other hand, as the heat flux decreased to zero, the superheat tended to approach to a constant value for each subcooling. This asymptotic superheat at zero heat flux was higher for higher subcooling. Transient incipient boiling superheat was reasonably explained by the combination of two kinds of incipient boiling models.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献