An Experimental Study of Three-Dimensional Turbulent Boundary Layer and Turbulence Characteristics Inside a Turbomachinery Rotor Passage

Author:

Anand A. K.1,Lakshminarayana B.1

Affiliation:

1. Department of Aerospace Engineering, The Pennsylvania State University, University Park, Pa.

Abstract

Three-dimensional boundary layer and turbulence measurements of flow inside a rotating helical channel of a turbomachinery rotor are described. The rotor is a four-bladed axial flow inducer operated at large axial pressure gradient. The mean velocity profiles, turbulence intensities and shear stresses, and limiting stream-line angles are measured at various radial and chordwise locations, using rotating triaxial hot-wire and conventional probes. The radial flows in the rotor channel are found to be higher compared to those at zero or small axial pressure gradient. The radial component of turbulence intensity is found to be higher than the streamwise component due to the effect of rotation. Flow near the annulus wall is found to be highly complex due to the interaction of the blade boundary layers and the annulus wall resulting in an appreciable radial inward flow, and a large defect in the mainstream velocity. Increased level of turbulence intensity and shear stresses near the midpassage are also observed near this radial location.

Publisher

ASME International

Subject

General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tip Clearance Effects in a Turbine Rotor: Part II—Velocity Field and Flow Physics;Journal of Turbomachinery;2000-02-01

2. Assessment of Unsteady Flows in Turbines;Journal of Turbomachinery;1992-01-01

3. Unsteady Flow in Axial Flow Compressors;Modern Research Topics in Aerospace Propulsion;1991

4. Effect of swirl on axisymmetric sudden expansion flow;25th Joint Propulsion Conference;1989-07-12

5. Turbulence modeling for complex shear flows;AIAA Journal;1986-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3