Viscous Scaling Phenomena in Miniature Centrifugal Flow Cooling Fans: Theory, Experiments and Correlation

Author:

Walsh Patrick A.1,Walsh Edmond J.1,Grimes Ronan1

Affiliation:

1. Department of Mechanical and Aeronautical Engineering, Stokes Institute, University of Limerick, Limerick, Ireland

Abstract

This paper analyzes the scale effects that occur in miniature centrifugal flow fans and investigates the possibility of optimizing blade geometry so that performance can be enhanced. Such fans are typically employed in small scale heat sinks such as those used for processor cooling applications or in portable electronics. The specific design parameter varied is the blade chord length, and the resulting fan performance is gauged by examining the flow rate, pressure rise, and power consumption characteristics. The former two are measured using a BS 848 fan characterization rig and the latter, by directly measuring the power consumed. These characteristics are studied for three sets of scaled fans with diameters of 15 mm, 24 mm, and 30 mm, and each set considers six individual blade chord lengths. A novel theory is put forward to explain the anticipated effect of changing this parameter, and the results are analyzed in terms of the relevant dimensionless parameters: Reynolds number, chord length to diameter of fan ratio, flow coefficient, pressure coefficient, and power coefficient. When these characteristic parameters are plotted against the Reynolds number, similar trends are observed as the chord length is varied in all sets of scaled fans. The results show that the flow coefficient for all the miniature fans degrade at low Re values, but the onset of this degradation was observed at higher Re values for longer blade chord designs. Conversely, it was found that the pressure coefficient is elevated at low Re, and the onset Re for this phenomenon correlates well with the drop off in flow coefficient. Finally, the trend in power coefficient data is similar to that for the flow coefficient. The derived theory is used to correlate this data for which all data points fall within 6% of the correlation. Overall, the findings reported herein provide a good understanding of how changing the blade chord length affects the performance of miniature centrifugal fans; hence, providing fan designers with guidelines to aid in developing optimum blade designs, which minimize adverse scaling phenomena.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference17 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3