A Methodology for the Efficient Quantification of Parameter and Model Uncertainty

Author:

Feldmann R.1,Gehb C. M.1,Schaeffner M.1,Melz T.23

Affiliation:

1. Technical University of Darmstadt, Mechanical Engineering Department, System Reliability Adaptive Structures and Machine Acoustics SAM , Otto-Berndt-Straße 2, Darmstadt 64287, Germany

2. Technical University of Darmstadt, Mechanical Engineering Department, System Reliability Adaptive Structures and Machine Acoustics SAM , Otto-Berndt-Straße 2, Darmstadt 64287, Germany ; , Bartningstraße 47, Darmstadt 64289, Germany

3. Fraunhofer Institute for Structural Durability and System Reliability LBF , Otto-Berndt-Straße 2, Darmstadt 64287, Germany ; , Bartningstraße 47, Darmstadt 64289, Germany

Abstract

Abstract Complex structural systems often entail computationally intensive models that require efficient methods for statistical model calibration due to the high number of required model evaluations. In this paper, we present a Bayesian inference-based methodology for efficient statistical model calibration that builds upon the combination of the speed in the computation of a low-fidelity model with the accuracy of the computationally intensive high-fidelity model. The proposed two-stage method incorporates the adaptive Metropolis algorithm and a Gaussian process (GP)-based adaptive surrogate model as a low-fidelity model. In order to account for model uncertainty, we incorporate a GP-based discrepancy function into the model calibration. By calibrating the hyperparameters of the discrepancy function alongside the model parameters, we prevent the results of the model calibration to be biased. The methodology is illustrated by the statistical model calibration of a damping parameter in the modular active spring-damper system, a structural system developed within the collaborative research center SFB 805 at the Technical University of Darmstadt. The reduction of parameter and model uncertainty achieved by the application of our methodology is quantified and illustrated by assessing the predictive capability of the mathematical model of the modular active spring-damper system.

Funder

Deutsche Forschungsgemeinschaft

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Reference47 articles.

1. Verification and Validation in Computational Engineering and Science: Basic Concepts;Comput. Methods Appl. Mech. Eng.,2004

2. Review of Statistical Model Calibration and Validation—From the Perspective of Uncertainty Structures;Struct. Multidiscip. Optim.,2019

3. A Comprehensive Overview of a Non-Parametric Probabilistic Approach of Model Uncertainties for Predictive Models in Structural Dynamics;J. Sound Vib.,2005

4. Bayesian Calibration of Computer Models;J. R. Stat. Soc. Ser. B (Stat. Methodol.),2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3