Solar Photovoltaics Integrated With Hydrated Salt-Based Phase Change Material

Author:

Elavarasan Rajvikram Madurai1,Singh Preeti2,Leoponraj S.3,Khanna Sourav4,Chandran Mohanraj5

Affiliation:

1. Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai 625015, Tamil Nadu, India

2. Simulate Learning Solutions Pvt. Ltd., Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India

3. Department of Electrical and Electronics Engineering, Sri Venkateswara College of Engineering, Chennai 602117, Tamil Nadu, India

4. School of Energy and Electronic Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK

5. Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Karur 639113, Tamil Nadu, India

Abstract

Abstract Maintaining the temperature of the photovoltaic (PV) panel within the described standard helps in achieving higher power conversion efficiency. To regulate the PV temperature, phase change material (PCM)-based cooling techniques have been proposed in several literature. However, most of the studies utilize organic PCMs whose low thermal conductivity confines their potential. Thus, in the proposed work, the rear side of the 20 Wp PV panel is coated with hydrated salt-based PCM and is integrated with an aluminum sheet (PV–PCM–Al) to increase the thermal conductivity of the system. The effect of the PV–PCM–Al panel in enhancing the PV efficiency is realized by comparing it with a standard uncooled PV panel. This concept was experimented under direct sunlight for about a week in Chennai, the southern part of India. To perceive the performance enhancement, thermal images were taken for both the cooled and uncooled PV panels. In addition, open-circuit voltage, short-circuit current, and power output were measured. The experimentation is also backed up by numerical simulations to understand the heat transfer characteristic features of the designed integrated PCM and aluminum cooling system. The experimentation results highlight that a maximum increase of about 7.67% in the PV efficiency was obtained using a cooled PV panel when compared to an uncooled PV panel. A maximum increase of 7.34% in the open-circuit voltage and a maximum drop of 4.6 °C in the PV temperature were obtained.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3