Characterizing the Mechanical and Viscoelastic Response of the Porcine Facet Joint Capsule Ligament in Response to a Simulated Impact

Author:

Fewster Kayla M.1,Barrett Jeff M.1,Callaghan Jack P.2

Affiliation:

1. Department of Kinesiology, University of Waterloo, Waterloo, ON N2 L 3G1, Canada

2. Faculty of Applied Health Science, Department of Kinesiology, University of Waterloo, Waterloo, ON N2 L 3G1, Canada

Abstract

Abstract The facet capsule ligament (FCL) is a structure in the lumbar spine that constrains motions of the vertebrae. Subfailure loads can produce microdamage resulting in increased laxity, decreased stiffness, and altered viscoelastic responses. Therefore, the purpose of this investigation was to determine the mechanical and viscoelastic properties of the FCL under various magnitudes of strain from control samples and samples that had been through an impact protocol. Two hundred FCL tissue samples were tested (20 control and 180 impacted). Impacted FCL tissue samples were obtained from functional spinal units that had been exposed to one of nine subfailure impact conditions. All specimens underwent the following loading protocol: preconditioning with five cycles of 5% strain, followed by a 30 s rest period, five cycles of 10% strain, and 1 cycle of 10% strain with a hold duration at 10% strain for 240 s (4 min). The same protocol was followed for 30% and 50% strain. Measures of stiffness, hysteresis, and force-relaxation were computed. No significant differences in stiffness were observed for impacted specimens in comparison to control. Impacted specimens from the 8 g flexed and 11 g flexed and neutral conditions exhibited greater hysteresis during the cyclic-30% and cyclic-50% portion of the protocol in comparison to controls. In addition, specimens from the 8 g and 11 g flexed conditions resulted in greater stress decay for the 50%-hold conditions. Results from this study demonstrate viscoelastic changes in FCL samples exposed to moderate and highspeed single impacts in a flexed posture.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3