Forced Convection Heat Transfer of a Giesekus Fluid in Circular Micro-Channels Subjected to a Constant Wall Temperature

Author:

Norouzi M.1,Rezaie M. R.1

Affiliation:

1. Faculty of Mechanical Engineering Department, Shahrood University of Technology, Shahrood 3619995161, Iran

Abstract

Abstract In this paper, an exact analytical solution for forced convective heat transfer of nonlinear viscoelastic fluid in isothermal circular micro-channel is presented. The nonlinear Giesekus constitutive equation is used to model the Giesekus fluid heat transfer in micro-channel with constant wall temperature, which is the main innovative aspect of the current study. This constitutive equation is a powerful tool and able to model the fractional viscometric functions, extensional viscosity, and elastic property. The solution of temperature profile and Nusselt number is obtained based on the Frobenius method. The effects of Weissenberg number, mobility factor, slip coefficient, and Navier index on temperature distribution, velocity profile, and Nusselt number are investigated in detail. The results show that the increases in both slip coefficient and Navier index cause the increases in slip velocity and maximum dimensionless temperature at the wall and the micro-channel center, respectively. Moreover, the Nusselt number has an upward trend with increases in slip coefficient and Navier index parameters. The results are indicated that the flow and temperature fields have a complex relation with mobility factor which controls the level of the nonlinearity of the Giesekus model. Additionally, three correlations for Nusselt number of Giesekus flow in micro-channel are presented.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3