A New Method for Estimating Bubble Diameter at Different Gravity Levels for Nucleate Pool Boiling

Author:

Banerjee Sandipan1,Lian Yongsheng1,Liu Yang2,Sussman Mark2

Affiliation:

1. Department of Mechanical Engineering, University of Louisville, Louisville, KY 40292

2. Department of Mathematics, Florida State University, Tallahassee, FL 32306

Abstract

Abstract Nucleate boiling has significant applications in earth gravity (in industrial cooling applications) and microgravity conditions (in space exploration, specifically in making space applications more compact). However, the effect of gravity on the growth rate and bubble size is not yet well understood. We perform numerical simulations of nucleate boiling using an adaptive moment-of-fluid (MoF) method for a single vapor bubble (water or Perfluoro-n-hexane) in saturated liquid for different gravity levels. Results concerning the growth rate of the bubble, specifically the departure diameter and departure time, have been provided. The MoF method has been first validated by comparing results with a theoretical solution of vapor bubble growth in superheated liquid without any heat-transfer from the wall. Next, bubble growth rate, bubble shape, and heat transfer results under earth gravity, reduced gravity, and microgravity conditions are reported, and they are in good agreement with experiments. Finally, a new method is proposed for estimating the bubble diameter at different gravity levels. This method is based on an analysis of empirical data at different gravity values and using power-series curve fitting to obtain a generalized bubble growth curve irrespective of the gravity value. This method is shown to provide a good estimate of the bubble diameter for a specific gravity value and time.

Funder

National Aeronautics and Space Administration

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3