A Nonparametric Method for Estimating Rates of Intracellular Ice Formation Due to Independent Competing Mechanisms

Author:

Karlsson Jens O. M.1

Affiliation:

1. Department of Mechanical Engineering, Villanova University, 800 E Lancaster Avenue, Villanova, PA 19085-1681

Abstract

Abstract The probability of intracellular ice formation (IIF) has conventionally been analyzed by counting the cumulative number of IIF events observed in a cell population, and normalizing to the total cell count to estimate the cumulative IIF probability. However, this method is invalid when attempting to distinguish among multiple, independent IIF mechanisms, because of confounding effects due to competition for a finite pool of unfrozen cells. Therefore, an alternative approach for analyzing IIF data is proposed, based on treating IIF as a marked point process, in which the points represent IIF events and the marks represent different mechanisms of IIF. Using the new method, it is possible to quantify the kinetics associated with any IIF mechanism for which corresponding events can be marked (i.e., experimentally distinguished from competing IIF mechanisms). The proposed approach is nonparametric, making possible characterization of IIF mechanisms that have not yet been fully elucidated. The new analytical approach was compared to the conventional method of IIF analysis using data from a simulated experiment, demonstrating that the new method yielded superior estimates of the cumulative distribution function of IIF times when two competing mechanisms of IIF were active. The proposed algorithm was also applied to cryomicroscopic IIF observations in adherent endothelial cells, yielding rate estimates for two concurrent IIF processes. Furthermore, a proof is presented to demonstrate that when the proposed data analysis algorithm is applied to IIF data from a single mechanism of IIF, the results are equivalent to those obtained by the conventional method of analysis.

Funder

Directorate for Engineering

Villanova University

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3