Affiliation:
1. State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
Abstract
Abstract
This study presents a first attempt to explore new analytic free vibration solutions of doubly curved shallow shells by the symplectic superposition method, with focus on non-Lévy-type shells that are hard to tackle by classical analytic methods due to the intractable boundary-value problems of high-order partial differential equations. Compared with the conventional Lagrangian-system-based expression to be solved in the Euclidean space, the present description of the problems is within the Hamiltonian system, with the solution procedure implemented in the symplectic space, incorporating formulation of a symplectic eigenvalue problem and symplectic eigen expansion. Specifically, an original problem is first converted into two subproblems, which are solved by the above strategy to yield the symplectic solutions. The analytic frequency and mode shape solutions are then obtained by the requirement of the equivalence between the original problem and the superposition of subproblems. Comprehensive results for representative non-Lévy-type shells are tabulated or plotted, all of which are well validated by satisfactory agreement with the numerical finite element method. Due to the strictness of mathematical derivation and accuracy of solution, the developed method provides a solid approach for seeking more analytic solutions.
Funder
National Natural Science Foundation of China
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献