Affiliation:
1. Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269
Abstract
Abstract
Mode shape information plays the essential role in deciding the spatial pattern of vibratory response of a structure. The uncertainty quantification of mode shape, i.e., predicting mode shape variation when the structure is subjected to uncertainty, can provide guidance for robust design and control. Nevertheless, computational efficiency is a challenging issue. Direct Monte Carlo simulation is unlikely to be feasible especially for a complex structure with a large number of degrees-of-freedom. In this research, we develop a new probabilistic framework built upon the Gaussian process meta-modeling architecture to analyze mode shape variation. To expedite the generation of input data set for meta-model establishment, a multi-level strategy is adopted which can blend a large amount of low-fidelity data acquired from order-reduced analysis with a small amount of high-fidelity data produced by high-dimensional full finite element analysis. To take advantage of the intrinsic relation of spatial distribution of mode shape, a multi-response strategy is incorporated to predict mode shape variation at different locations simultaneously. These yield a multi-level, multi-response Gaussian process that can efficiently and accurately quantify the effect of structural uncertainty to mode shape variation. Comprehensive case studies are carried out for demonstration and validation.
Funder
National Science Foundation
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献