Performance Improvements of Nuclear Power Plants by the Application of Longer LP Last Stage Blades and Advanced Design Techniques

Author:

Jones Mike1,Crossland Robert1

Affiliation:

1. Alstom Power, Rugby, UK

Abstract

Over the last decade, the Author’s company (Alstom Power) has retrofitted the steam turbines in 34 nuclear units on a diverse range of half and full-speed machines, powered by Pressurised and Boiling Water Reactors. Some of those projects have been described in other papers, with an explanation of the novel laser measurement and fast-track installation techniques that have been developed to meet the onerous demands of nuclear plants and authorities. The ageing global nuclear fleet has suffered reduced levels of reliability and performance due to effects such as Stress Corrosion Cracking (SCC), moisture erosion and shaft line torsional faults. Alstom has developed a range of steam turbine retrofit solutions that are resistant to SCC and erosion, have extended maintenance intervals and deliver high levels of efficiency. A portfolio of rear stage blades is available, from which an optimum design can be selected to suit each project. This paper focuses on the improvements in thermal performance and reliability of a number of recent nuclear steam turbine retrofits. It outlines the existing designs and some of the challenges faced by the plants concerning reliability, operation and efficiency and then describes the approach to addressing those issues by retrofitting with modern designs. The paper describes the blading design and the techniques which are used to evaluate exhaust performance. It will also show the methods which have been used to integrate longer Last Stage Blades into existing LP frames. The paper concludes by presenting the experience, in terms of performance and installation, of some of the projects.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3