The Impact of Preferential Vaporization on Lean Blowout in a Referee Combustor at Figure of Merit Conditions

Author:

Bell David C.1,Heyne Joshua S.1,Won Sang Hee2,Dryer Frederick L.2

Affiliation:

1. University of Dayton, Dayton, OH

2. University of South Carolina, Columbia, SC

Abstract

As alternative jet fuels continue to be developed, their impact on combustor performance remains of utmost importance. Alternative jet fuels generally contain few aromatics and differ in alkylated compositions, yielding different chemical and physical properties from those of conventional jet fuels; understanding how these property differences impact combustor performance near limiting conditions is important in certifying their use in blending with petroleum derived fuels or as complete substitutes. Ignition and extinction properties that are associated with Lean Blowout (LBO) are areas of focus for jet fuel certification as they are important safety metrics bounding combustor stability. Previous results for 23 different test fuels in a referee combustor show a strong correlation of Lean Blowout (LBO) with fuel Derived Cetane Number (DCN). This previous study involved fuels with compositions similar to conventional fuels. However, fuels with properties differing significantly from conventional fuels were found to have a weaker correlation with DCN and higher LBO equivalence ratios overall. The surrogate fuels and blends that show the largest discrepancy from the earlier correlation were blends involving highly volatile, low DCN components such as iso-octane prevalent in the early stages of distillation, and less volatile, high DCN normal alkane components such as n-hexadecane, prevalent in the final stages of distillation. Thus, significant differences in fuel reactivity along the distillation curve from those of conventional petroleum derived fuels appeared to exhibit differing LBO character. From these observations, three hypotheses, preferential vaporization, relative droplet lifetimes, and thermal quenching, are proposed and investigated by utilizing the available data. Using normalized power law regressions, distillation simulation methods and Quantitative Structure Property Relation (QSPR) results, the DCN at 34% distillation recovery show a stronger correlation with LBO than the DCN determine for the fuel itself. In this paper, we apply findings to propose fuel compositions to investigate the noted hypotheses by utilizing reactive low molecular weight molecules and a less reactive high molecular weight fuel. The suggested fuel to stress test this hypothesis is a blend of 30 (molar)% n-heptane and 70 (molar)% Gevo Alcohol-to-Jet (ATJ), which is essentially composed of (primarily) 2,2,4,6,6 iso-dodecane and isocetane. If preferential vaporization is significant, then this fuel should be more stable than the “DCN-Law,” i.e. fuels are no more stable than the corresponding DCN allows, would predict.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3