Torque and Power Coefficients of a Vertical Axis Wind Turbine With Optimal Pitch Control

Author:

Chen Jim Shih-Jiun1,Chen Zhi1,Biswas Saroj1,Miau Jiun-Jih2,Hsieh Cheng-Han2

Affiliation:

1. Temple University, Philadelphia, PA

2. National Cheng-Kung University (NCKU), Tainan, Taiwan

Abstract

Vertical axis wind turbines (VAWT) have been valued in recent years for their low manufacturing cost, structural simplicity and convenience of applications in urban settings. Despite their advantages, VAWTs have several drawbacks including low power coefficient, poor self-starting ability, negative torque and the associated cyclic stress at certain azimuth angles. Using pitch control ideas, our research is aimed at solving the above problems. In this study, a small-scale Giromill VAWT using three NACA-0015 airfoils with a cord length of 0.09 m and a wind turbine radius of 0.6 m is investigated. During each rotation, the angle of attack depends on the wind velocity, angular velocity and current azimuth angle for each turbine blade. Negative torques at certain angles are attributed to the inherent unsteady aerodynamic behavior at high angles of attack. Without optimal pitch control, the Double-Multiple Streamtube (DMS) model predicts negative torques at certain azimuth angles and very low power coefficients for tip speed ratios below 2.5. The unfavorable negative torques are eliminated using an optimal pitch control strategy, which maximizes the tangential force coefficients and thus the torque coefficients by iterations of all possible relative angles of attack for various tip speed ratios. As a result, the power coefficient is significantly improved especially at low tip speed ratios in the range of zero to three (λ = 0 – 3). Blade pitch control can also solve the self-starting problem and reduce the vibration of vertical axis wind turbines.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3