Assessment of the Combustion Behavior of a Pilot-Scale Gas Turbine Burner Using Image Processing

Author:

De Giorgi Maria Grazia1,Sciolti Aldebara1,Campilongo Stefano1,Ficarella Antonio1

Affiliation:

1. University of Salento, Lecce, Italy

Abstract

Experimental investigations were performed on a non-premixed liquid fuel-lean burner. The present work aims to the development of a methodology for the recognition of flame instability regimes in industrial and aeronautical burners. Instability, in fact, is an unpleasant aspect of combustive system that negatively impacts on combustion efficiency. The online monitoring of the occurrence of instability conditions, permits to adjust combustion parameters (as fuel or air mass flow, temperature, pressure, etc.) and to stabilize again the flame. High speed visualization systems are promising methods for on-line combustion monitoring. In this study two high speed visualization systems in the visible range and in the infrared spectral region were applied to characterize combustion efficiency and flame stability. Different processing techniques were used to extract representative data from flame images. Wavelet Decomposition and Spectral analysis of pixel intensities of flame images were used for feature extraction. Finally a statistical analysis was performed to identify the most unstable regions of the flame by the pixel intensity variance.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3