Heat Storage Enhanced in Solar Chimney Power Plant Model by Using PCM Material

Author:

Albaldawi Rafea A. H.1,Shyaa Aseel K.1,Nuri Haider S.1

Affiliation:

1. Al-Mustansiriya University, Baghdad, Iraq

Abstract

Solar energy is a renewable energy source that can generate electricity. When there is much solar radiation, there is not always a need for all the energy from the solar, and when the weather is cloudy there may be too little energy to meet demand. Thus, it is often wise to implement energy storage in systems with a large share of renewable energy. Latent heat storage is one of the most efficient ways of storing thermal energy. Sodium Sulfate Decahydrate (Glauber’s salt) has a larger energy storage density and a higher thermal conductivity. So the present work, built solar chimney power plant of 2m-radius of collector and a 4m chimney height integrated by phase change materials. Aim of designing and building solar chimney to estimate the effect of adding phase change materials as well as to examine the effect of inclination angle (16°, 8°). The results show that maximum temperature difference between collector exit and the ambient reached to 23.7°C for case (i) and for 17.7°C case (ii), the maximum air velocity reached 2.25 m/s that in case (ii) and reached 2.05 m/s in case (i).and maximum collector efficiency can be reached to 8.925% in case (ii).

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling and performance investigation of a solar chimney power plant with glass-covered solar collector;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2024-04-03

2. Comparative assessment of innovative methods to improve solar chimney power plant efficiency;Sustainable Energy Technologies and Assessments;2022-02

3. Performance improvement of solar chimneys using phase change materials: A review;Solar Energy;2021-11

4. Enhancement Thermal Conductivity of PCM in Thermal Energy storage;IOP Conference Series: Materials Science and Engineering;2020-11-01

5. Solar updraft tower power generation;Solar Energy;2016-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3