Finite Element Modeling of Microcrack Growth in Cortical Bone

Author:

Mischinski Susan,Ural Ani1

Affiliation:

1. Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085

Abstract

Bone is similar to fiber-reinforced composite materials made up of distinct phases such as osteons (fiber), interstitial bone (matrix), and cement lines (matrix-fiber interface). Microstructural features including osteons and cement lines are considered to play an important role in determining the crack growth behavior in cortical bone. The aim of this study is to elucidate possible mechanisms that affect crack penetration into osteons or deflection into cement lines using fracture mechanics-based finite element modeling. Cohesive finite element simulations were performed on two-dimensional models of a single osteon surrounded by a cement line interface and interstitial bone to determine whether the crack propagated into osteons or deflected into cement lines. The simulations investigated the effect of (i) crack orientation with respect to the loading, (ii) fracture toughness and strength of the cement line, (iii) crack length, and (iv) elastic modulus and fracture properties of the osteon with respect to the interstitial bone. The results of the finite element simulations showed that low cement line strength facilitated crack deflection irrespective of the fracture toughness of the cement line. However, low cement line fracture toughness did not guarantee crack deflection if the cement line had high strength. Long cracks required lower cement line strength and fracture toughness to be deflected into cement lines compared with short cracks. The orientation of the crack affected the crack growth trajectory. Changing the fracture properties of the osteon influenced the crack propagation path whereas varying the elastic modulus of the osteon had almost no effect on crack trajectory. The findings of this study present a computational mechanics approach for evaluating microscale fracture mechanisms in bone and provide additional insight into the role of bone microstructure in controlling the microcrack growth trajectory.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3