Experimental Study of Condensation in a Thermoacoustic Cooler With Various 3D-Printed Regenerators Using Water Vapor as the Working Fluid

Author:

Bekkulov Aibek1,Luthen Andrew1,Xu Ben1

Affiliation:

1. Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539

Abstract

Abstract Thermoacoustics (TA) deals with the conversion of heat into sound and vice versa. The device that transfers energy from a low-temperature reservoir to a high-temperature one by utilizing acoustic work is called TA cooler (TAC). The main components of a typical TAC are a resonator, a porous regenerator (e.g., stack of parallel plates), and two heat exchangers. The thermoacoustic phenomenon takes place in the regenerator where a nonzero temperature gradient is imposed and interacts with the sound wave. The low temperature at the cold end of TAC can be used to condense water from the humid air and also reduce the moisture. In the current study, the sound wave with high intensity was produced to drive a TAC to produce cooling power at a cold temperature around 18 °C, using saturated water vapor as the working fluid. The drainage of condensate in the regenerator is the key to the system’s performance. This work is dedicated to investigate the effect from temperature gradient created in TAC on the condensation enhancement, by adopting three different designs of regenerators. A 3D printer was used to design and fabricate different structures of regenerator, and then, the systematic cooling capacity was tested and compared with different regenerators. This work can be extended to evaluate how the TA effect can be affected by the condensation if humid air is directly used as the working fluid. The potential application of this investigation can be an autonomous TAC system for water harvesting in arid areas.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3