Numerical Procedure for Dynamic Simulation of Two-Point Wheel/Rail Contact and Flange Climb Derailment of Railroad Vehicles

Author:

Yamashita Shunpei1,Sugiyama Hiroyuki1

Affiliation:

1. Department of Mechanical Engineering, Tokyo University of Science, Tokyo 102-0073, Japan

Abstract

In this investigation, a numerical procedure for wheel/rail contact problems in the analysis of curve negotiation of railroad vehicles is developed using constraint/elastic contact approach. In particular, this work focuses on the flange contact detection algorithm using the two-point look-up contact table and the switching algorithm from the elastic to constraint contact for the flange climb simulation. The two-point look-up contact table is used for the contact search of the second point of contact modeled using the elastic contact, while the constraint contact is used for the first point of contact on the wheel tread. Furthermore, in the flange climb simulation using the constraint contact formulation, loss of a tread contact modeled using the constraint contact occurs. Therefore, the elastic contact used for modeling the flange contact in the two-point contact state needs to be switched to the constraint contact as soon as loss of the tread contact occurs. For this reason, if the Lagrange multiplier associated with the contact constraint becomes greater than or equal to zero, the elastic contact used for the flange is switched to the constraint contact. The computational algorithm for the proposed switching algorithm is also presented. Several numerical examples are presented in order to demonstrate the use of the numerical procedure developed in this investigation for modeling the two-point tread/flange contact as well as the flange climb behavior. Numerical results are in good agreement with those of the existing fully elastic contact formulation. Furthermore, it is shown that significant reduction in CPU time is achieved using the numerical procedure developed in this investigation.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Wheel-Rail Contact Algorithms on Running Safety Assessment of Trains under Earthquakes;Applied Sciences;2023-04-22

2. A semi-online spatial wheel-rail contact detection method;International Journal of Rail Transportation;2021-11-22

3. Parallel computing of wheel-rail contact;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2019-10-08

4. Study on the derailment behaviour of a railway wheelset with solid axles in a railway turnout;Vehicle System Dynamics;2019-01-21

5. A Study on the Contact Ellipse and the Contact Pressure During the Wheel Wear through Passing the Tracks including Several Sharp Curves;International Journal of Engineering;2018-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3