Affiliation:
1. Boyer School of Natural Science, Saint Vincent College, Latrobe, PA 15650 e-mail:
Abstract
Austenitic stainless steels—particularly the 304 and 316 families of alloys—exhibit similar trends in the dependence of yield stress on temperature. Analysis of temperature and strain-rate dependent yield stress literature data in alloys with varying nitrogen content and grain size has enabled the definition of two internal state variables characterizing defect populations. The analysis is based on an internal state variable constitutive law termed the mechanical threshold stress model. One of the state variables varies solely with nitrogen content and is characterized with a larger activation volume. The other state variable is characterized by a much smaller activation volume and may represent interaction of dislocations with solute and interstitial atoms. Analysis of the entire stress–strain curve requires addition of a third internal state variable characterizing the evolving stored dislocation density. Predictions of the model are compared to measurements in 304, 304L, 316, and 316L stainless steels deformed over a wide range of temperatures (up to one-half the melting temperature) and strain rates. Model predictions and experimental measurements deviate at temperatures above ∼600 K where dynamic strain aging has been observed. Application of the model is demonstrated in irradiated 316LN where the defect population induced by irradiation damage is analyzed. This defect population has similarities with the stored dislocation density. The proposed model offers a framework for modeling deformation in stable austenitic stainless steels (i.e., those not prone to a martensitic phase transformation).
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献