Exact Stationary Solutions of Stochastically Excited and Dissipated Integrable Hamiltonian Systems

Author:

Zhu W. Q.1,Yang Y. Q.1

Affiliation:

1. Department of Mechanics, Zhejiang University, Hangzhou 310027, P. R. China

Abstract

It is shown that the structure and property of the exact stationary solution of a stochastically excited and dissipated n-degree-of-freedom Hamiltonian system depend upon the integrability and resonant property of the Hamiltonian system modified by the Wong-Zakai correct terms. For a stochastically excited and dissipated nonintegrable Hamiltonian system, the exact stationary solution is a functional of the Hamiltonian and has the property of equipartition of energy. For a stochastically excited and dissipated integrable Hamiltonian system, the exact stationary solution is a functional of n independent integrals of motion or n action variables of the modified Hamiltonian system in nonresonant case, or a functional of both n action variables and α combinations of phase angles in resonant case with α (1 ≤ α ⩽ n – 1) resonant relations, and has the property that the partition of the energy among n degrees-of-freedom can be adjusted by the magnitudes and distributions of dampings and stochastic excitations. All the exact stationary solutions obtained to date for nonlinear stochastic systems are those for stochastically excited and dissipated nonintegrable Hamiltonian systems, which are further generalized to account for the modification of the Hamiltonian by Wong-Zakai correct terms. Procedures to obtain the exact stationary solutions of stochastically excited and dissipated integrable Hamiltonian systems in both resonant and nonresonant cases are proposed and the conditions for such solutions to exist are deduced. The above procedures and results are further extended to a more general class of systems, which include the stochastically excited and dissipated Hamiltonian systems as special cases. Examples are given to illustrate the applications of the procedures.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3