Affiliation:
1. Department of Mechanics, Zhejiang University, Hangzhou 310027, P. R. China
Abstract
It is shown that the structure and property of the exact stationary solution of a stochastically excited and dissipated n-degree-of-freedom Hamiltonian system depend upon the integrability and resonant property of the Hamiltonian system modified by the Wong-Zakai correct terms. For a stochastically excited and dissipated nonintegrable Hamiltonian system, the exact stationary solution is a functional of the Hamiltonian and has the property of equipartition of energy. For a stochastically excited and dissipated integrable Hamiltonian system, the exact stationary solution is a functional of n independent integrals of motion or n action variables of the modified Hamiltonian system in nonresonant case, or a functional of both n action variables and α combinations of phase angles in resonant case with α (1 ≤ α ⩽ n – 1) resonant relations, and has the property that the partition of the energy among n degrees-of-freedom can be adjusted by the magnitudes and distributions of dampings and stochastic excitations. All the exact stationary solutions obtained to date for nonlinear stochastic systems are those for stochastically excited and dissipated nonintegrable Hamiltonian systems, which are further generalized to account for the modification of the Hamiltonian by Wong-Zakai correct terms. Procedures to obtain the exact stationary solutions of stochastically excited and dissipated integrable Hamiltonian systems in both resonant and nonresonant cases are proposed and the conditions for such solutions to exist are deduced. The above procedures and results are further extended to a more general class of systems, which include the stochastically excited and dissipated Hamiltonian systems as special cases. Examples are given to illustrate the applications of the procedures.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献