Analysis of a Nonlinear System Exhibiting Chaotic, Noisy Chaotic, and Random Behaviors

Author:

Lin H.1,Yim S. C. S.1

Affiliation:

1. Department of Civil Engineering, Oregon State University, Corvallis, OR 97331-2303

Abstract

This study presents a stochastic approach for the analysis of nonchaotic, chaotic, random and nonchaotic, random and chaotic, and random dynamics of a nonlinear system. The analysis utilizes a Markov process approximation, direct numerical simulations, and a generalized stochastic Melnikov process. The Fokker-Planck equation along with a path integral solution procedure are developed and implemented to illustrate the evolution of probability density functions. Numerical integration is employed to simulate the noise effects on nonlinear responses. In regard to the presence of additive ideal white noise, the generalized stochastic Melnikov process is developed to identify the boundary for noisy chaos. A mathematical representation encompassing all possible dynamical responses is provided. Numerical results indicate that noisy chaos is a possible intermediate state between deterministic and random dynamics. A global picture of the system behavior is demonstrated via the transition of probability density function over its entire evolution. It is observed that the presence of external noise has significant effects over the transition between different response states and between co-existing attractors.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3