Brake Squeal: A Control Strategy Using Shunted Piezoelectric Pads

Author:

Abdullah Yaqoub1,Baz Amr2

Affiliation:

1. Department of Automotive and Marine Engineering Technology, College of Technological Studies, Public Authority for Applied Education and Training, P.O. Box 42325, Shuwaikh 70654, Kuwait

2. Department of Mechanical Engineering, College Park, MD 20742

Abstract

Abstract Brake squeal has been a challenging issue to overcome for the automotive sector. The phenomenon often underpins more serious mechanical issues leading to poor user satisfaction, compromised safety, and a negative impact on the market. Automotive manufacturers are highly motivated to solve the squealing problem to prevent sudden failure of the brake system, which can be catastrophic. This article provides an approach to mitigate the squealing of brakes through the application of piezoelectric patches shunted by appropriately tuned electrical networks. The designated piezoelectric patches used with the brake pads can provide a unique characteristic, namely, being able to convert the mechanical energy of squealing brakes into electrical energy. This energy can be dispersed throughout an electrical network, fostering greater stability and damping risk factors of the brake system. This technique is envisioned as empowering the disc brake systems to perform across a range of operating parameters in a robust fashion, without experiencing brake squealing. The model proposed in this article is a multifield finite element model that includes two degrees-of-freedom (DOFs) disc brake system model as well as 2DOFs for the shunted piezoelectric network to independently control the brake modes of oscillation and hence to enable the mitigation of the squealing threshold. The brake system establishes the stability limits as a function of the design parameters of the shunted piezoelectric network. The effectiveness of the developed system is also provided in a numerical examples that shows the effectiveness of the shunted piezoelectric networks in controlling brake squeal phenomenon. The method proposed in this article can be applied to distributed disc brakes as an extension of the current work.

Publisher

ASME International

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3