Multimodal Evaluation of the Spatiotemporal Variations of Periprosthetic Bone Properties

Author:

Fraulob Manon1,Le Cann Sophie1,Voumard Benjamin2,Yasui Hirokazu3,Yano Keita3,Vayron Romain4,Matsukawa Mami3,Zysset Philippe2,Haïat Guillaume1

Affiliation:

1. MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, Creteil F-94010, France

2. ARTORG Centre for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern CH-3010, Switzerland

3. Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan

4. Université Polytechnique Hauts de France, Laboratoire d'Automatique, de Mécanique et d'informatique Industrielles et Humaines, LAMIH UMR CNRS 8201, Valenciennes F-59300, France

Abstract

Abstract Titanium implants are widely used in dental and orthopedic surgeries. However, implant failures still occur because of a lack of implant stability. The biomechanical properties of bone tissue located around the implant need to be assessed to better understand the osseointegration phenomena and anticipate implant failure. The aim of this study was to explore the spatiotemporal variation of the microscopic elastic properties of newly formed bone tissue close to an implant. Eight coin-shaped Ti6Al4V implants were inserted into rabbit tibiae for 7 and 13 weeks using an in vivo model allowing the distinction between mature and newly formed bone in a standardized configuration. Nanoindentation and micro-Brillouin scattering measurements were carried out in similar locations to measure the indentation modulus and the wave velocity, from which relative variations of bone mass density were extracted. The indentation modulus, the wave velocity and mass density were found to be higher (1) in newly formed bone tissue located close to the implant surface, compared to mature cortical bone tissue, and (2) after longer healing time, consistently with an increased mineralization. Within the bone chamber, the spatial distribution of elastic properties was more heterogeneous for shorter healing durations. After 7 weeks of healing, bone tissue in the bone chamber close to the implant surface was 12.3% denser than bone tissue further away. Bone tissue close to the chamber edge was 16.8% denser than in its center. These results suggest a bone spreading pathway along tissue maturation, which is confirmed by histology and consistent with contact osteogenesis phenomena.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3