Dual-Porosity Dual-Permeability Poroelastodynamics Analytical Solutions for Mandel’s Problem

Author:

Liu Chao1

Affiliation:

1. Aramco Services Company, Aramco Research Center—Houston, Houston, TX 77084

Abstract

AbstractAnalytical solutions to the classical Mandel’s problem play an important role in understanding Biot’s theory of poroelasticity and validating geomechanics numerical algorithms. In this paper, existing quasi-static poroelastic solutions to this problem are extended to the dual-porosity dual-permeability poroelastodynamics solution which considers inertial effects for a naturally fractured and fluid-saturated sample subjected to a harmonic excitation. The solution can generate the associated elastodynamics and poroelastodynamics solutions as special cases. A naturally fractured Ohio sandstone is selected to demonstrate the newly derived solution. The elastodynamics, poroelastodynamics, and dual-porosity poroelastodynamics solutions are compared to illustrate the effects of fluid–solid coupling and the natural fractures. The rock sample behaves in drained condition at low frequencies when the oscillation has insignificant impedance effects on fluid movement. Compared to the other two solutions, the dual-porosity solution predicts the largest amplitude of displacement at low frequencies when the response is predominantly controlled by the stiffness. The Mandel–Cryer effect is observed in both rock matrix and fractures and occurs at a lower frequency in rock matrix because it is easier to build up pore pressure in lower-permeability rock matrix. At high frequencies, pore fluids are trapped and the rock sample behaves in an undrained state. At the resonance frequencies, the elastodynamics solution provides the largest amplitude of displacement, followed by the poroelastodynamics and dual-porosity poroelastodynamics solution. This is because of the dissipation caused by the presence of both fluid and fractures.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3