Advancements In Hydraulic Modeling of Cooling Water Intakes in Power Plants

Author:

Johansson Andrew E.1,Stacy Philip S.1,White Dean K.1,Lin Fangbiao1

Affiliation:

1. Alden Research Laboratory, Inc., Holden, MA

Abstract

Satisfactory hydraulic performance of pump intakes is very important to avoid flow conditions that would adversely affect the performance of cooling water and service water pumps in power plants. Hydraulic performance is best evaluated using physical hydraulic models. Typically, a hydraulic model is used to identify formation of any objectionable free surface and subsurface vortices, presence of any high swirl or pre-rotation and/or non-uniform axial velocity distribution at the impeller entrance. A model study would evaluate an initial design based on an acceptance criteria and derive remedial modifications as needed to meet the acceptance criteria. Over the past several years, modeling of pump intakes has evolved in terms of criteria for model scale selection, instrumentation accuracy and computerized data acquisition techniques, the use of computational fluid dynamics (CFD) to evaluate detailed approach flow patterns and the availability of Hydraulic Institute Standards (HIS) for acceptance criteria to evaluate hydraulic performance. Also, hydraulic model studies conducted by various laboratories over many years have contributed to the advancement of the knowledge about vortex formation, swirl and scale effects in models. To the benefit of all, these advancements have resulted in higher confidence in models with more efficient execution of the model studies at minimal costs. The purpose of this paper is to present advancements that have been made in the field of hydraulic modeling of pump intakes. Examples are provided to show how hydraulic models may be used to first identify unacceptable flow conditions and then to derive modifications to improve the hydraulic performance for both circulating water and cooling water pump intakes.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Experimental Study on Hydraulic Model of Water Intake Canal at Steam and Gas Power Plants;IOP Conference Series: Earth and Environmental Science;2021-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3