Wind Turbine Gearbox Fault Detection Using Multiple Sensors With Features Level Data Fusion

Author:

Lu Y.1,Tang J.1,Luo H.2

Affiliation:

1. Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269

2. Global Technical Leader – Wind, Machinery Diagnostics Services, GE Energy Services, 1 River Road, Schenectady, NY 12345

Abstract

Fault detection in complex mechanical systems such as wind turbine gearboxes remains challenging, even with the recently significant advancement of sensing and signal processing technologies. As first-principle models of gearboxes capable of reflecting response details for health monitoring purpose are difficult to obtain, data-driven approaches are often adopted for fault detection, identification or classification. In this paper, we propose a data-driven framework that combines information from multiple sensors and fundamental physics of the gearbox. Time domain vibration and acoustic emission signals are collected from a gearbox dynamics testbed, where both healthy and faulty gears with different fault conditions are tested. To deal with the nonstationary nature of the wind turbine operation, a harmonic wavelet based method is utilized to extract the time-frequency features in the signals. This new framework features the employment of the tachometer readings and gear meshing relationships to develop a speed profile masking technique. The time-frequency wavelet features are highlighted by applying the mask we construct. Those highlighted features from multiple accelerometers and microphones are then fused together through a statistical weighting approach based on principal component analysis. Using the highlighted and fused features, we demonstrate that different gear faults can be effectively detected and identified.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3