Affiliation:
1. Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
2. Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
Abstract
There are very few detailed experimental investigations about the heat transfer behavior of nanofluids in microchannel. The heat transfer behavior of nanofluids in microchannel is investigated. Two microchannels with hydraulic diameters 218 and 303 μm are fabricated by wet etching process on silicon wafer. An experimental set-up having provision of flow in the channel and temperature measurement along with bottom wall temperature is built-up. Alumina nanofluids with concentrations of 0.25 vol. %, 0.5 vol. %, and 1 vol. % with 45 nm are prepared, stabilized, and characterized by standard methods. The thermal conductivity and viscosity used in the study were measured and analyzed. The base fluids used are water and ethylene glycol. The effect of volume fraction, channel size, particle size, and base fluids are presented and analyzed. An important phenomenon of dispersion is observed. In addition, numerical modeling is carried out by using discrete phase approach. Shear induced particle migration is identified to be the reason of difference for dispersion of particles. The Brownian and thermophoretic forces are responsible for major changes in particle concentration and their movement. Also, it was found that better heat transfer characteristics can be obtained by higher concentration of nanofluids and by low viscous base fluids.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献